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Significance

Wildfires have rapidly increased 
across the United States in recent 
decades, and smoke from these 
fires is a growing contributor to 
air pollution. Our understanding 
of the fire- specific contributions 
to this growing pollution source 
remains incomplete, however, 
limiting comprehensive 
measurement of the severity and 
breadth of a given fire’s impact. 
We develop a method to quantify 
accumulated population smoke 
PM2.5 exposure and asthma- 
related health impacts for 
individual fires across the 
contiguous United States 
between 2006 and 2020. Our 
approach provides a method for 
quantifying the social cost of 
individual fires and the 
increasingly transboundary 
nature of wildfire smoke and can 
inform how to allocate fire and 
air quality management 
resources to best protect 
communities from this growing 
wildfire- related risk.
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Rapidly changing wildfire regimes across the Western United States have driven more 
frequent and severe wildfires, resulting in wide- ranging societal threats from wildfires 
and wildfire- generated smoke. However, common measures of fire severity focus on 
what is burned, disregarding the societal impacts of smoke generated from each fire. 
We combine satellite- derived fire scars, air parcel trajectories from individual fires, 
and predicted smoke PM2.5 to link source fires to resulting smoke PM2.5 and health 
impacts experienced by populations in the contiguous United States from April 2006 
to 2020. We quantify fire- specific accumulated smoke exposure based on the cumula-
tive population exposed to smoke PM2.5 over the duration of a fire and estimate excess 
asthma- related emergency department (ED) visits as a result of this exposure. We find 
that excess asthma visits attributable to each fire are only moderately correlated with 
common measures of wildfire severity, including burned area, structures destroyed, and 
suppression cost. Additionally, while recent California fires contributed nearly half of 
the country’s smoke- related excess asthma ED visits during our study period, the most 
severe individual fire was the 2007 Bugaboo fire in the Southeast. We estimate that a 
majority of smoke PM2.5 comes from sources outside the local jurisdictions where the 
smoke is experienced, with 87% coming from fires in other counties and 60% from fires 
in other states. Our approach could enable broad- scale assessment of whether specific 
fire characteristics affect smoke toxicity or impact, inform cost- effectiveness assessments 
for allocation of suppression resources, and help clarify the growing transboundary 
nature of local air quality.

wildfire | air pollution | climate change | health impacts

Wildfire regimes have changed in recent decades due to a combination of climate change 
and a century of fire suppression (1). This increase has driven a greater frequency of large 
wildfire events that result in physical infrastructure damage from the fire and health- related 
damages from the fine particulate matter (PM2.5) in smoke (2–4). While total PM2.5 has 
been decreasing in the decades since the Clean Air Act, recent evidence suggests that wildfire 
smoke PM2.5 has begun to reverse this trend, especially in the Western United States (5–7). 
This reversal is concerning as recent research suggests that PM2.5 from wildfire smoke could 
be more toxic than PM2.5 from other sources for some health outcomes (4, 8–10) and that 
existing air quality regulation is poorly equipped to manage smoke from wildfires (7). 
Smoke PM2.5 concentrations have now been well measured at broad temporal and spatial 
scales in the United States (6, 11), and increasing concentrations have been linked to an 
array of negative societal outcomes, including respiratory morbidity (12), premature deaths 
(13), preterm births (14–16), and lower test performance in school- aged children (17), 
underscoring the growing social costs of wildfire smoke PM2.5 exposure.

Despite growing knowledge of the broad- reaching negative impacts of wildfire smoke 
exposure, commonly used metrics of wildfire severity currently do not reflect the societal 
harm from smoke. Instead, severity metrics typically focus on the number of structures 
burned, lives tragically lost in the fire itself, cost of firefighting, and/or total burned area, 
with the latter a particularly problematic measure given the agreed- upon need for more 
low- intensity fire (such as prescribed fire) in order to reduce the likelihood of more extreme 
fires (18–20).

An inability to link specific fires to their smoke impacts is problematic for at least three 
reasons. First, the health and societal impacts of smoke from specific fires are plausibly a 
large proportion of their damage, and the lack of information about the magnitude of 
these damages hampers efforts to understand whether taxpayer- funded wildfire suppression 
efforts (21, 22) are being allocated to the most damaging fires. Second, it is increasingly 
hypothesized that the same amount of smoke from different fires need not have equivalent 
damages, given that some fires (for example) incinerate chemicals in buildings or burn 
and aerosolize metals or fungi found in specific soils (23–25). But these hypotheses remain 
hard to test broadly absent a method to link specific smoke exposures to source fire D
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characteristics at scale. Third, linking smoke exposures to their 
source fires is important for understanding the transboundary 
nature of wildfire smoke and in turn for designing strategies and 
policies to mitigate smoke exposures. Recent increases in the 
number of exceptional event applications to flag and omit air 
quality exceedances due to wildfires (26) suggest that the man-
agement of transboundary wildfire air pollution is a growing 
challenge. Although the Environmental Protection Agency (EPA) 
requires jurisdictions to develop mitigation plans for recurring 
exceptional events (27) and regional coalitions have been formed 
to address these issues, the continued transport of smoke across 
jurisdiction boundaries (28–30) will make it challenging for state, 
tribal, or local air quality agencies to reduce local PM2.5 concen-
trations by reducing local emissions.

Here, we combine high- resolution estimates of daily smoke 
PM2.5 (6) with a physical model of fire- specific air parcel trajec-
tories from the Hybrid Single- Particle Lagrangian Integrated 
Trajectory (HYSPLIT) model to develop a method for linking 
specific source fires to the smoke PM2.5 generated by that fire. Our 
method uses the inverse distance weighted sum of simulated 
smoke trajectory points to proportionally attribute the daily smoke 
PM2.5 for each 10- km gridcell- day to specific smoke- producing 
fires. This allows us to estimate the share of smoke that each fire 
has plausibly contributed to downwind locations. We then use 
this method to calculate the accumulated smoke exposure from 
wildfire smoke PM2.5 based on the cumulative concentration of 
smoke PM2.5 that populations experience from each fire, for  
all identified smoke- producing fires between April 2006 and 
December 2020 (Methods). This approach aggregates the μg/m3 
of smoke PM2.5 experienced by the affected population over the 
duration of exposure to a specific fire. We build on recent work 
that estimated the effects of wildfire smoke PM2.5 exposure on 
asthma emergency department (ED) visits (31) and calculate 
fire- specific health impacts (Methods). We use these estimates to 
rank fires by their health impacts. We then compare the estimated 
number of excess asthma ED visits to other commonly used wild-
fire severity and suppression effort metrics such as burned area, 
suppression cost, and structures burned.

Finally, we use our linked estimates to quantify changing pat-
terns and magnitudes of transboundary smoke PM2.5 movement, 
calculating how the regional sources of smoke exposure have 
changed between an earlier, less smokey 2006 to 2010 period vs. 
a later more smokey 2016 to 2020 period. We also combine the 
fire- smoke linked data with estimates of total PM2.5 for 11 Western 
states (32) to quantify the proportion of total PM2.5 from 
out- of- county source fires—a quantity relevant to discussions of 
how to manage local air quality.

Results

Our method of linking source fires to smoke exposure is shown 
in Fig. 1, using a particularly active fire period in California in 
2018 as an example. During this period, three large active fires 
generated smoke that covered much of California, and this smoke 
was readily apparent in satellite imagery, recorded in analyst- 
delineated smoke plumes (33), and identified in gridded smoke 
PM2.5 data (6) (Fig. 1 A–C). We associated daily analyst estimates 
of smoke- producing fire locations with fire extent polygons and 
ran forward trajectories of smoke particles emitted at each fire 
location using the HYSPLIT model (Fig. 1D and Methods). 
Trajectories were then used to partition the contribution of each 
source fire to estimated wildfire smoke PM2.5 (Fig. 1E and 
Methods), and fire- specific accumulated smoke exposure was cal-
culated as the sum of population exposed to each μg/m3 of smoke 

on each day for the duration of each fire (SI Appendix, Fig. S1). 
In total, our analysis includes over 461,000 total smoke generating 
sources with around 23,900 fires linked to specific burned area 
polygons identified by NASA’s Moderate- Resolution Imaging 
Spectroradiometer (MODIS) satellite and around 437,500 addi-
tional smoke- producing fires that do not fall into burned area 
polygons (Methods).

Validation of our approach on days in which only one fire was 
burning shows that our approach captures nearly all of the smoke 
emitted by a given fire and aligns closely with visible satellite 
imagery on the same day, though we note that satellite resolution 
constraints can lead to conservative estimates of contributed 
smoke PM2.5 in some cases (Methods and SI Appendix, Figs. S2 
and S3). On days in which multiple fires are burning and locations 
experience overlapping smoke from multiple fires, fire- specific 
attributions are less certain, and we thus compute a fire- specific 
“attribution certainty score” that calculates the percent of a fire’s 
overall attributed smoke exposure that occurs on days when smoke 
from other fires is not present (Methods and SI Appendix, Fig. S4); 
more isolated fires have attributed smoke exposures that are more 
certain. When comparing against EPA air pollution monitor read-
ings, our approach captures a majority of wildfire- driven air pol-
lution, does not exceed total ground- measure PM2.5 concentrations, 
and shows close alignment with the amount of smoke PM2.5 pre-
dicted at example EPA air pollution monitoring stations using 
ground data (Fig. 2 and SI Appendix, Fig. S5).

We use the fire- specific accumulated smoke exposure to quan-
tify the number of excess asthma ED visits associated with each 
fire and use these quantities to rank fires by their health impact 
(Methods). We show the top 9 most impactful fires in Fig. 3 and 
the top 20 fires in SI Appendix, Table S1. Out of the top 9, 6 of 
the fires are from the 2020 fire season and 7 of these top fires 
originated in California. Perhaps surprisingly, the Bugaboo fire, 
which originated in Georgia in 2007 and is the only top fire that 
originated on the East Coast, is ranked as the fire that resulted in 
the highest amount of accumulated smoke exposure and highest 
number of estimated excess asthma ED visits (1,407 95% CI: 
1,295 to 1,518), nearly twice the amount estimated for the next 
fire. This fire spread dense smoke across highly populated areas of 
the US Southeast for over a month (SI Appendix, Fig. S6). The 
four other fires in the top 5 most severe fires were all in California. 
Three of these fires—August Complex, Dolan, and Bobcat, all in 
2020—were in late summer, a period during which prevailing 
winds carried smoke across much of the US West and Midwest 
for weeks (Fig. 3). The August Complex fire, in 2020, generated 
smoke for more than 2 mo, which resulted in the second highest 
number of asthma- related ED visits (853 95% CI: 785 to 921) 
across much of the contiguous US. The fourth, the 2018 Camp 
Fire, was during late fall, where easterly winds blew thick smoke 
into highly populated CA regions for a short period. We calculate 
that the Camp Fire generated the highest average daily smoke 
PM2.5 concentration across gridcells in our sample, with the 
Bugaboo Fire second (SI Appendix, Table S1). Other fires in the 
top ten tended to be late summer fires on the West Coast (CA and 
OR), where large amounts of smoke were again blown east across 
much of the US West and Midwest. Our ranking of fires by health 
impact would be preserved for any health outcome beyond asthma 
[e.g., mortality (36)] where counts or rates of the outcome are 
thought to have a linear relationship with smoke exposure, 
although the aggregate health burden could differ by outcome.

We compare the number of excess asthma ED visits for each fire 
with different commonly used wildfire severity and suppression 
effort metrics, including burned area, structures burned (37), and 
fire suppression cost (38). The number of excess asthma ED visits D
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Fig. 1. Attributing wildfire smoke PM2.5 to source fires, using active fires in CA on July 29th, 2018, as an example. (A) Geostationary satellite imagery over California 
with visible smoke downloaded from the Registry of Open Data on Amazon Web Services (AWS) (34). (B) Hazard Mapping System smoke plume annotations 
shown in gray. Active fires are shown as red polygons. (C) Wildfire smoke PM2.5 from all fires with smoke PM2.5 capped at 100 μg/m3, using data from ref. 6.  
(D) HYSPLIT trajectories for three main active fires on July 29th. Each path represents the movement of a particle that originated within the fire polygon up to 5 d 
before July 29th. Darker paths suggest that more particles followed that trajectory. (E) July 29th snapshot of the estimated contribution of each fire to smoke PM2.5.
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has a moderate positive rank correlation with burned area, one of 
the most commonly used measures of fire activity and severity. We 
estimate that natural log burned area from each fire and the number 
of excess asthma ED visits we attributed to each fire has a Spearman 
rank correlation coefficient of ρ = 0.29 (Fig. 4A). While there are 
few very large fires with a small number of attributed asthma ED 
visits, we see a substantial number of relatively small fires with a 
high number of excess asthma ED visits, indicating that fire size is 

only moderately correlated with the population impacts of the fire’s 
smoke. We see similar moderate positive relationship between 
expenditure on fire suppression and the number of structures 
destroyed on the number of excess asthma ED visits (Fig. 4 B and 
C). Regarding fire suppression, while the fires that resulted in the 
largest asthma ED visit impacts were those that tended to receive 
the most suppression resources (Fig. 4 B, Upper Right Corner), we 
document a substantial number of fires where the calculated 
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Fig.  2. Fire- specific contributions to Hillsboro EPA monitoring station readings. (A) Time- series readings from the Hillsboro EPA air pollution monitoring 
station show close alignment between the estimated contributed smoke PM2.5 from source fires, the “calculated smoke PM2.5”, and the total PM2.5 estimated at 
the monitoring station. The calculated smoke PM2.5 was used in the training process of the smoke PM2.5 product in ref. 6. and is estimated at the EPA station 
by subtracting the month- specific 3- y nonsmoke day median from the total PM2.5 readings. The sum of the contributed smoke PM2.5 aligns closely with the 
calculated smoke PM2.5 because the machine learning model was trained to predict this value. We direct interest readers to ref. 6. for more information. (B–D) 
Satellite imagery on specific days marked by the dotted vertical lines in panel A. Imagery was downloaded from NASA’s Worldview application (https://worldview.
earthdata.nasa.gov), part of NASA’s Earth Observing System Data and Information System (EOSDIS) (35).
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number of excess asthma ED visits was high but suppression efforts 
were modest (points in Upper Left), and a similarly high number 
where suppression costs were high but smoke impacts modest 
(Lower Right). Consistent with this relationship and with the recent 

finding that fire suppression costs are overwhelmingly determined 
by the threat of fires to physical structures (38), we find that smoke 
impact as measured by asthma ED visits only moderately tracked 
structure damage.
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Fig. 3. Top fires ranked by number of estimated attributable excess asthma ED visits from April 2006 to 2020. Each small multiple map shows the total health 
impacts measured by the number of excess asthma ED visits from wildfire smoke PM2.5 aggregated over the duration of the fire (with 95% confidence interval in 
parentheses). This estimate considers the amount of smoke PM2.5, the population affected, and the total number of days of smoke exposure. The line chart shows 
the estimated asthma- related ED visits from smoke PM2.5 over time from the initial day of the fire. Initial fire locations are cyan colored and outlined in black.
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We use our linked fire- smoke estimates to quantify the changing 
overall burden of smoke exposure, to locate the main sources of 
this exposure, and to characterize the transboundary nature of 
overall exposure. The magnitude of smoke PM2.5 associated num-
ber of excess asthma ED visits that the US population experienced 
doubled from the early less smokey period in 2006 to 2010 to the 
more smokey late period in 2016 to 2020 (Fig. 5A). California 
was by far the largest source and recipient of wildfire smoke in 
both periods, with the contribution of CA- sourced smoke to total 
excess asthma ED visits growing from 26% in the early period to 
40% in the late period. While multiple states in the Midwest, 
South, and East were in the top- 5 smoke recipients prior to 2010, 
a ranking driven in part by large populations in those states, the 
recent rapid increase in fire activity in the West has meant that 
Western states now bear a much larger share of the accumulated 
smoke exposure, sourced from themselves or nearby states.

On average across the United States over our study period, we 
calculate that 87% of smoke PM2.5 comes from “trans- county” 
sources (i.e., source fires outside the county where the smoke was 
experienced) and 60% from trans- state sources. In many states, a 
large portion of smoke PM2.5 remains within state borders, but 
Western US states, such as California, Idaho, and Montana, con-
tribute large amounts of smoke PM2.5 to neighboring states 
(SI Appendix, Fig. S7). For recipients of this smoke, large percent-
ages of smoke exposure (e.g., 94% in Nevada) come from 
out- of- state. Regarding international smoke transport, we find 
that the share of overall number of excess asthma ED visits expe-
rienced in the United States attributable to fires in Canada and 
Mexico has held steady in both periods at around 8% and 3%, 
respectively, suggesting that a large proportion (nearly 90%) of 
smoke exposure in the United States comes from domestic fires.

Using independent gridded estimates of total PM2.5 (32), we 
quantify the contribution of transboundary wildfire smoke PM2.5 
to total PM2.5 between the early (2006 to 2010) and late (2016 
to 2020) periods. We find that all counties in the Western United 

States (414 counties) experienced an increase in the proportion 
of total PM2.5 from out- of- county fire sources (Fig. 5B). This find-
ing aligns with literature suggesting that wildfire smoke has 
slowed, and in some cases reversed, trends in overall air quality 
improvement (7, 39, 40) and links these reversals to transboundary 
out- of- county fire sources. In the later period, we calculate that 
for 120 counties, over a quarter of total PM2.5 experienced (sum 
of daily PM2.5 over the 2016 to 2020 period) in that county was 
from trans- county smoke sources (there were no such counties in 
the early period) and in 3 counties, over half of total PM2.5 was 
from trans- county smoke sources.

Discussion

Our study develops a method for measuring wildfire impact by 
connecting individual wildfires to the surface smoke PM2.5 that 
is generated and quantifying the expected number of excess 
asthma- related ED visits in populations downwind of each fire. 
Compared to existing efforts that aim to link smoke to fire sources, 
our method provides granular fire- specific attribution of smoke 
PM2.5 and health impacts at highly resolved temporal and spatial 
resolution, over the contiguous United States from 2006 to 2020. 
Existing literature has used the HYSPLIT model (28) to under-
stand smoke transport, but focused on regional transport of smoke 
rather than specific fire transport and also did not quantify the 
attributed smoke PM2.5. Recent research has used other simplified 
Lagrangian particle transport models (41) to produce back trajec-
tories of simulated air parcels arriving at specific locations and 
provide estimates of PM2.5 from wildfire smoke. However, this 
analysis focused on summer months and only conducted popu-
lation smoke PM2.5 analysis for 33 population centers, as com-
pared to our analysis which extends beyond the summer months 
and covers the contiguous US. The relatively coarse resolution of 
these analyses’ source regions makes it challenging to consider the 
impact from specific fires.
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Fig. 4. Comparison between common fire- related severity metrics and attributed excess asthma ED visits. From Left to Right, the panels show the relationship 
between the natural log of burned area (acres), fire suppression cost (2017 dollars), or structures destroyed (# structures) vs. the number of excess asthma 
ED visits from smoke PM2.5 with the color of the hexbin indicating the count of individual fires. In the Left plot, the burned area is calculated from the GlobFire 
dataset for fires from April 2006 to 2020 (n = 18,606). For the center plot, only fires greater than 300 acres burned from April 2006 to 2016 in the Western United 
States are shown due to inconsistent fire suppression cost data for smaller fires and the limited time frame of the fire cost source dataset (n = 984). The Right 
plot shows available data on destroyed structures data for the contiguous United States from April 2006 to 2020 (n = 558). The blue dotted lines represent the 
fitted regression lines.
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Other researchers have used a combination of chemical trans-
port models (CTMs) (42), simplified transport models (43), and 
close proximity air pollution monitors (44) to study the impact of 
individual wildfires on ambient air quality. However, these studies 

have primarily only considered the impact of active fires on a 
relatively small spatial area and the analyses do not cover multiple 
fires and years. In our work, we consider all smoke- producing fires 
identified by satellite imagery and trained analysts (6) from April 
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Fig. 5. Interstate transport of smoke PM2.5 and contribution of transboundary smoke to total PM2.5 concentrations. (A) Alluvial diagram of smoke PM2.5 from 
source to receptor states in the early (2006 to 2010) and late (2016 to 2020) periods. Percentages represent the % of total excess asthma ED visits from smoke 
PM2.5 contributed by that state. The dark blue flows represent within state, light blue outside state, and green flows outside country transport of smoke PM2.5. 
(B) The fraction of total PM2.5 from source fires that are outside of the county in the early (2006 to 2010) and late (2016 to 2020) periods has grown dramatically, 
especially across the Pacific Northwest, California, Idaho, and Montana.
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2006 to 2020. Although CTMs are commonly used to estimate 
the impact of specific air pollutants on downwind communities 
(45–47), uncertainty around surface fuel characteristics and emis-
sion inventories result in highly variable estimates of PM air pol-
lution from fires (48, 49). Additionally, the computational burden 
of running these models limits their applicability in our context, 
as comprehensive characterization of smoke contributions would 
require a separate model run for each of the fires in our data. 
Related studies that use satellite imagery or surface observations 
to analyze air pollution trends in the Western United States (6, 11, 
50, 51) provide insight into the overall contribution of wildfire to 
regional air quality trends but are unable to link smoke to specific 
source fires.

We estimate health- related smoke impacts due to smoke PM2.5 
by applying previously calculated relationships between smoke 
PM2.5 and asthma- related ED visits. Our approach follows exist-
ing literature on the health impacts of smoke and assumes that 
the asthma- related impacts of smoke are a linear function of accu-
mulated daily exposure (31, 52) and that different income/ demo-
graphic subgroups respond similarly to the same level of smoke 
exposure (53) (SI Appendix, Fig. S8). We note that the use of any 
other health concentration–response function that is also linear 
[e.g., smoke- mortality (36)] in our framework would generate 
the same health impact ranking for fires. However, even if health 
outcomes in different communities respond similarly to a given 
change in smoke exposure, there is substantial variation in the 
total amount of smoke that different communities are exposed 
to, either from specific fires or from wildfires as a whole, with 
Hispanic and Native communities often exposed at much higher 
levels (6). By counting total excess asthma- related ED visits, our 
estimates could obscure acute impacts among groups with smaller 
populations but high exposure levels. Understanding fire- specific 
impacts on specific vulnerable subgroups of interest is an impor-
tant area for future work. Similarly, in the absence of a nationally 
representative estimate of smoke- asthma concentration–response 
function, we rely on recent evidence from CA (31, 53). While 
CA is a state with large variation in smoke exposure and rich 
socioeconomic and demographic diversity, we hope that future 
work can estimate rigorous, nationally representative health 
response functions that can be applied in this sort of analysis. 
More broadly, our approach could account for different health 
outcomes, nonlinear mappings of exposure to health impacts, 
differential impacts across income or other demographic charac-
teristics, or heterogeneous impacts by location if future data 
 support such revisions.

Our analysis identifies the Bugaboo Scrub Fire in 2007 as pro-
ducing the highest number of excess asthma ED visits during our 
study period. One reason for the high impact of this fire is its 
proximity to large urban areas and that smoke from this fire trans-
ported across much of the Eastern Seaboard (SI Appendix, Fig. S6). 
Recent research also suggests that slower- burning smoldering fires, 
similar to the peatland fires in the Bugaboo fire, could release large 
amounts of harmful PM due to incomplete combustion of surface 
matter, which ultimately results in high smoke PM2.5 emissions 
(49, 54). Better understanding the landscape features that predict 
smoke emissions is an active and important area for additional 
work. While the Bugaboo fire could have truly been more 
smoke- producing than other fires, we note that the fire had a 
higher attribution certainty (score of 89%) compared to other top 
fires, such as the 2020 California fires (attribution certainty scores 
around 50%) suggesting greater uncertainty around the smoke 
PM2.5 of the 2020 California fires because multiple other fires 
were occurring at the same time and contributing smoke to the 
same locations (SI Appendix, Table S1).

The moderate correlation between the number of excess asthma 
ED visits and other common measures of fire severity is consistent 
with the large observed share of suppression resources spent on 
limiting physical property damage (38, 55). Fires that threaten 
structures in less densely populated wildland–urban interface 
regions are often more expensive to suppress (38), but often result 
in smaller population exposure to smoke. On the other hand, fires 
further from populated areas may threaten fewer structures and 
receive less suppression effort but can generate large amounts of 
smoke that have more distant but likely very large health impacts, 
including increased mortality. We emphasize that our results do 
not necessarily imply that more suppression resources should be 
directed toward fires that generate large smoke impacts. Wildfire 
suppression decisions often involve complex sets of objectives and 
constraints, such as managing a fire to support natural ecosystem 
and wildlife habitat development or reducing the risk of harmful 
toxic smoke from burned structures (22), in addition to protecting 
the structures themselves, under significant time pressure. 
However, conditional on using fire suppression to manage societal 
risk, further recognition and quantification of downwind smoke 
impacts may help inform and shift future resource allocation deci-
sions (19). Other management actions such as increased invest-
ment in the use of low- intensity fires could both reduce the risks 
of wildfires and the quantity and impacts of smoke that is gener-
ated (18–20). We also note that while our analysis provides a 
retrospective analysis of smoke impacts, future wildfire manage-
ment decisions would require additional research and improve-
ments in medium and long- term forecasts of smoke dispersion 
and impacts.

Our smoke- linking method is able to capture a majority of 
smoke PM2.5 contributed by specific fires, as shown by analysis 
of isolated fires where our method captures most but not all of 
nearby smoke (SI Appendix, Figs. S2 and S3). Nevertheless, attri-
butions are limited in part by analysts’ abilities to identify 
smoke- producing fire points, from which HYSPLIT trajectories 
are initialized, and our ability to accurately match fire points to 
fire polygons. Future work that leverages satellite sensors with 
higher spatial and temporal resolution could improve the identi-
fication of smoke- producing fires and/or active fire- burned areas 
and refine the fire ignition point to fire polygon match. Further 
refinements to the smoke PM2.5 attribution function could also 
result in better estimates of fire- specific smoke PM2.5. Specifically, 
while our approach allows us to calculate the average age of par-
ticles belonging to a fire, we do not use this information to attrib-
ute smoke PM2.5 to fires. Future research that sheds light on how 
age of smoke modulates PM concentration and composition can 
be used to improve the attribution function and/or estimates of 
health impacts. Our analysis could also potentially misattribute 
diffuse smoke with longer atmospheric residence time because we 
model HYSPLIT trajectories for 6 d after the fire ignites (Methods). 
After this period, the smoke could remain in the atmosphere, but 
we would not be able to associate it with a source fire. Then, if 
another fire generates smoke trajectories that intersect with this 
old smoke, the smoke would be assigned to the new fire. Extending 
the HYSPLIT modeling to account for long- lasting smoke could 
help reduce this occurrence.

Improved estimates of smoke plume injection height could also 
lead to better modeling of smoke transport, as literature suggests 
that the injection height of smoke plumes plays a large role in 
smoke transport but that accurate estimates of fire- specific injec-
tion heights are limited (49). While the majority of observed 
wildfire smoke injection occurs at near- surface altitudes (below 
2,000 m above ground), some intense fires in the summer months 
can loft smoke to higher altitudes (56). To account for uncertainty D
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in the injection height of plumes and following previous literature 
(28), we initialize trajectories at 3 different injection heights (500, 
1,500, and 2,500 m above ground level) for each fire and use the 
3 initialized trajectories evenly for all fires (Methods). Although 
this approach allows us to cover the range of historically observed 
smoke injection heights and weight toward near- surface injection, 
when there are multiple overlapping plumes, it could result in 
overestimation of distant smoke PM2.5 for smaller, cooler fires that 
are likely to have lower injection heights. Local smoke PM2.5 can 
also be overestimated for larger, hotter fires as these fires tend to 
have higher injection heights that travel greater distances. Recent 
satellite- derived estimations of smoke injection heights can further 
constrain the smoke injection height and lead to better trajectory 
modeling, but this approach is challenging due to the high pro-
portion of missing observations in wildfire smoke- saturated areas 
(57). However, leveraging further developments in satellite obser-
vation derived or modeled smoke plume injections could result 
in more accurate trajectories (58).

We use high- resolution predictions of daily smoke PM2.5 (6) 
across the contiguous United States to determine the surface- level 
smoke associated with fires. These estimates were generated by 
training a machine learning model to predict daily smoke PM2.5 
from a combination of satellite, reanalysis, and air trajectory sim-
ulations. Limitations of this upstream product will affect the 
results of this study. Specifically, the authors note that while the 
predicted product has an overall spatial out- of- sample model per-
formance of R2 = 0.67 (with 90% of held- out EPA monitoring 
station- specific R2 values between 0.21 and 0.88), the model 
struggles in certain geographies, such as the Southwest, and in sit-
uations when smoke appears overhead but does not mix to the 
surface. In these instances, the attributed smoke exposure and 
health impacts would also be less accurate.

Our method links smoke PM2.5 to source fires, which enables 
further analysis to better understand how fire characteristics might 
drive differential smoke toxicity. Recent literature suggests that 
wildfires can convert and release toxic elements, such as hexavalent 
chromium, into the atmosphere, but analysis has been limited to 
specific study sites (59). This work provides an approach to more 
broadly investigate whether burning specific materials, such as 
man- made structures (60), or other fire characteristics, such as 
smoke age, results in different smoke air pollution toxicity. We 
note that smoke particles that travel long distances can react and 
become more toxic when exposed to sunlight and other atmos-
pheric chemicals (61). Our approach does not model the chemical 
processes of these reactions.

As the climate continues to warm and wildfires increase across 
much of the Western United States and beyond (1, 62), PM air 
pollution from these events is trending upward and expected to 
worsen in the coming decades (5–7, 63). A growing literature 
finds that exposure to wildfire smoke results in a range of negative 
societal impacts, including impacts on respiratory- related mor-
bidity and all- cause mortality (12, 52, 64), interrupted learning 
(17, 65), and decreased labor productivity (66). Our work pro-
vides a method to connect these smoke PM2.5 impacts back to 
specific source fires and can help clarify policy options that aim 
to better allocate resources to address this growing environmental 
challenge.

Methods

HYSPLIT Trajectories for Smoke- Producing Fires. In this work, we leverage the 
HYSPLIT model (67) to track the movement of smoke emitted from particular fires 
and to allocate PM2.5 surfaces back to source fires. These data represent simulated 
forward trajectories of smoke particles emitted at smoke- producing fire points 

(HYSPLIT points) for all automatically detected and manually added fire hotspots 
identified by trained Hazard Mapping System (HMS) analysts (28, 68) between 
April 2006 and December 2020. The satellite- detected fire points are validated and 
identified as smoke- producing by HMS analysts and false positives are removed 
to generate a set of HYSPLIT initialization points, from which forward trajectories 
are run [see supplemental information of Childs et al. (6) for details of trajectory 
generation]. To incorporate uncertainty about smoke injection heights, we follow 
previous literature (28) and initialize three trajectories at each point beginning 
at different altitudes (500, 1,500, and 2,500 m above ground level) and use the 
generated trajectories evenly for all fires.

In total, there are 2.4 million distinct HYSPLIT initialization points from April 
2006 to December 2020 that each have three associated 6 d trajectories (one for 
each initial altitude). Each trajectory is defined as a sequence of estimated latitude, 
longitude, and height coordinates at hourly time steps following initialization. 
For each trajectory, we calculate the cumulative rainfall and minimum height so 
far on the trajectory path. We truncate each trajectory path by removing trajectory 
points that have been rained out or that have collided with the ground. With the 
remaining trajectory points, we calculate the cumulative trajectory distance from 
the fire polygon centroid or initial HYSPLIT point (if the initialization point did not 
fall within any fire polygons) to each successive point on the trajectory path, which 
we later use to distribute smoke PM2.5. For each HYSPLIT initialization point, HMS 
analysts assign a “duration” value that represents the number of hours that the 
specific fire produces smoke and analysts may duplicate fire points to represent 
severe smoke- producing fires. We run trajectories over the duration of each fire 
and remove duplicated fire points to reduce computation. After generating fire 
trajectories, we weigh each initialization point to account for the duplicated fire 
points that had been identified for that initialization time.

Assigning HYSPLIT Initialization Points to Fires. To group HYSPLIT initiali-
zation points, which are not associated with specific named fires, belonging to 
the same source fire, we match the location of HYSPLIT initialization points to a 
separate database of known fires. We use fire boundary shapes from the GlobFire 
v3 dataset subsetted to North America from April 2006 to 2020 (69). These fire 
polygons represent the final area of fires detected by NASA’s MODIS satellite and 
provide a single polygon of the total burned area for each detected fire with start 
and end dates. After matching the fire polygons with the locations of the smoke- 
producing HYSPLIT initialization points, we filter for points that fall between the 
start and end dates of the fire polygons. The resulting matched dataset represents 
the fire polygons and associated smoke- producing fire points.

Because a large number of HYSPLIT initialization points are satellite derived, 
the accuracy of the fire location is dependent on the resolution of the satellite 
product used to identify these fires and recent literature has suggested that the 
accuracy of HYSPLIT initialization points is around 2 to 3- km (28). As shown in 
SI Appendix, Fig. S9, the HYSPLIT initialization points, which are partially algo-
rithmically identified as thermal hotspots, appear to follow a rectangular grid and 
result in some smoke- producing HYSPLIT initialization points that fall outside of 
the buffered fire polygon. These points likely belong to the fire as there are no 
other fires nearby at this time and could contribute to decreased attribution of 
contributed smoke PM2.5 to this specific fire. Aligned with recent research that has 
shown a 2- km median spatial offset between the MODIS burned area product and 
identified fire points (70), we add a 2- km buffer to the boundary of detected fire 
polygons to account for this potential resolution- based inaccuracy. A larger buffer 
around the fire polygon would lead to more associated HYSPLIT initialization 
points per fire and therefore potentially larger smoke exposure and excess asthma 
ED visit estimates, at the potential cost of associating HYSPLIT initialization points 
with the wrong fire. We take the conservative approach and use a 2- km buffer, 
as suggested by the literature.

About 65% (1546271/2372751) of the nearly 2.4 million HYSPLIT initial-
ization points (smoke- producing fires) are matched to a fire polygon with a 
majority of the unmatched HYSPLIT initialization points occurring in recent years 
(SI Appendix, Fig. S10). One potential reason for more unmatched fire points in 
recent years is the inclusion of the hotspot detections from the Visible Infrared 
Imaging Radiometer Suite sensor starting in 2016, which has a higher resolution 
and detects more thermal anomalies (71) than previous thermal sensors used by 
the HMS system. To ensure that we do not ignore the smoke generated from the 
unmatched HYSPLIT initialization points, we assume that if a HYSPLIT initialization 
point does not fall into a buffered fire polygon, then it is a separate fire.D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 S

T
A

N
FO

R
D

 U
N

IV
E

R
SI

T
Y

 S
E

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
 o

n 
D

ec
em

be
r 

14
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
2.

17
4.

25
1.

2.

http://www.pnas.org/lookup/doi/10.1073/pnas.2309325120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309325120#supplementary-materials


10 of 12   https://doi.org/10.1073/pnas.2309325120 pnas.org

Calculating Smoke PM2.5 from Specific Fires. To estimate the contribution of 
smoke PM2.5 from specific fires, we combine the fire polygon matched trajectories 
with previous estimates of daily 10- km all- fire smoke PM2.5 over the period from 
April 2006 to 2020 (6). We first match trajectory points to 10- km gridcells using 
the trajectories described above for all of North America from April 2006 to 2020. 
After linking trajectory points (and initial source fire) to overlapping gridcells, 
we use a window function (spatial buffer) to account for the spatial dispersion of 
smoke particulates, as trajectory points represent a single point estimate of the 
likely location that an air parcel traveled. In reality, smoke could disperse and 
affect a larger area. We considered different window sizes ranging from no buffer-
ing around the gridcell where a trajectory point landed (just consider the 10- km 
gridcell where a trajectory point landed), all immediately neighboring gridcells 
(effectively a 30- km window centered on the gridcell where a trajectory point 
landed), and two rings of neighboring 10- km gridcells (a 50- km window centered 
on the gridcell where the trajectory point landed). We find that the 10- km window 
potentially underestimates the amount of fire- specific smoke PM2.5 leaving on 
average over 60% of all- fire smoke PM2.5 unaccounted for (SI Appendix, Fig. S11). 
We conduct the analysis with the 30- km window, which is more conservative than 
the 50- km window but makes up for a large portion of the all- fire smoke PM2.5 
that the 10- km window misses.

Although we are able to calculate the height of HYSPLIT trajectory points, 
we do not currently use this information (besides filtering out points that have 
been rained- out or that have collided with the ground) to distribute the smoke 
PM2.5 to specific fires. To distribute all- fire smoke PM2.5 at the gridcell to individ-
ual fires, we consider the number of trajectory points and cumulative trajectory 
distance of those points from a source fire. Specifically, as shown in SI Appendix, 
Fig. S1, for an individual gridcell, we first calculate the denominator total gridcell 
weight as the sum of inverse distance weighted trajectory point counts. In the 
supplemental figure example of the multiple fire, there are 5 trajectory points 
in gridcell 3 with 2 belonging to fire A and 3 belonging to fire B. Each of these 
trajectory points has a cumulative trajectory distance. The total gridcell weight is 
the sum of these inverse cumulative trajectory distances. This simplified example 
does not consider the spatial buffer described above, but the 30- km spatial buffer 
used in the main analysis would work similarly and also count trajectory points in 
the neighboring ring of gridcells. After calculating this total gridcell weight, we 
calculate a fire- specific gridcell share, which sums the inverse distance weighted 
trajectory counts from a specific fire and normalizes the value by the total gridcell 
weight. In SI Appendix, Fig. S1, fire A is calculated to have 10% share of all- fire 
smoke PM2.5 in gridcell 3 and fire B accounts for the remaining 90% share of all- 
fire smoke PM2.5 in the gridcell. The calculation of smoke PM2.5 from a single fire 
is the same as in the multiple fire case; however, because there are no trajectory 
points from other fires the calculated share for the single fire is 100%. Lastly, to 
distribute the all- fire smoke PM2.5 in a specific gridcell to individual fires, we 
multiply the fire- specific share with the total all- fire smoke PM2.5 in the gridcell.

Estimating Population Smoke Exposure in Each Gridcell. We estimate the 
population impacted by smoke PM2.5 from specific fires by combining the wildfire 
attributed smoke PM2.5 with gridded population data from WorldPop (72). We 
use the unconstrained individual countries 2000 to 2020 UN adjusted (1- km 
 resolution) dataset (https://hub.worldpop.org/doi/10.5258/SOTON/WP00671) 
and download data for the United States. We first calculate the yearly population 
in 10- km gridcells aligning with our smoke PM2.5 grid by taking an area- weighted 
sum of the 1- km WorldPop grid cells that fall into our 10- km smoke PM2.5 grid 
across the contiguous United States from 2006 to 2020. Then, to calculate the 
daily smoke exposure at the gridcell, we multiply the fire- specific contributed 
smoke PM2.5 with the population at the gridcell. In SI Appendix, Fig. S1, for the 
multiple fire case, gridcell 3 has a population of 10 so the smoke exposure from 
fire A is the product of fire A’s share, the total smoke PM2.5, and the population in 
the gridcell, which equals 20 person μg/m3. Smoke exposure for fire B follows a 
similar calculation and is estimated to have 180 person μg/m3 of smoke exposure. 
To calculate the smoke exposure for an individual fire over the duration of the fire, 
we sum the daily smoke exposure across gridcells and days.

Calculating Number of Excess Asthma ED Visits. To estimate health impacts 
of population smoke exposure from each fire, we build on recent work in CA 
(31) that linked estimates of smoke PM2.5 to georeferenced data on ED visits 
from 2006 to 2017 in the state. Using the same data (73) and a similar empir-
ical framework, we derive diagnosis specific zipcode by day ED visit rates and 

estimate how zipcode- level ED visits for asthma (one of the most well- established 
health impacts associated with wildfire smoke) respond to variation in wildfire 
smoke PM2.5 concentrations in that zip code. On average there are 1.17 daily ED 
visits per 100 K for asthma in our sample. To estimate an appropriate response 
function that can be applied to the current setting, we first assess whether the 
number of ED visits for asthma (1) responds linearly to wildfire smoke and (2) 
differs across income groups. Specifically, we estimate the following panel fixed 
effects regression:

 [1]

yzcdw =
∑7

l=0
� l f

(

smokez,d−l
)

+ �Xzcdw + �z + �cm + �sy + �w + �zcdw,

where yzcdw is the daily rate of ED visits for asthma in zipcode z, county c, date d, 
day- of- week w where the date falls into month m, season s, and year y. smokez,d- l 
is the smoke PM2.5 concentration (6) at the zipcode by day level. Because some 
ED visits are likely to occur not on the same day of exposure but in the following 
days, we estimate a distributed lag model with multiple daily lags (l). To account 
for any time- invariant differences across locations in average smoke exposure or 
average ED visitation, local seasonality in smoke or ED visitation, state- wide time 
trends in either variable, and within- week variation in ED visitation patterns, we 
include zipcode (δz), county by month- of- year (θcm), season- by- year (ηsy), and 
day- of- week (ωw) fixed effects, respectively. Based on previous work (31), we 
include 7 d of lagged smoke PM2.5 (i.e., day- of- exposure and an additional week 
of daily lags) and calculate the cumulative effect of a smoke PM2.5 by summing 
βl values across lags and calculating the analytical SEs for these sums. SEs are 
also clustered at the zipcode level.

In Eq. 1, the effect of wildfire smoke visits is identified using within- location 
variation in smoke exposure over time. In essence, it compares ED visits in a given 
location on smokey vs. less smokey (or smokeless) days, and asks whether ED visits 
are higher on days when smoke is in the air, accounting for anything that affects 
ED visits or smoke concentrations in a common way across locations (e.g., long 
term increases in ED visits, or short- term shocks from a bad flu season), anything 
that affects local- level ED visits or smoke in a seasonal way (e.g., wintertime ED 
visit average visits are higher in Fresno than in San Francisco, summertime smoke 
is higher in Sacramento than Los Angeles), and any differences on average across 
days in the week (e.g., weekends have higher ED visits that weekdays). Because 
the remaining local- level temporal variation in smoke is highly random, driven by 
idiosyncrasies in where and when fires start and how the wind blows on a given 
day, we believe that it is unlikely correlated with any other remaining unobserved 
factor also correlated with ED visits.

To assess linearity of the estimated response, we estimate separate versions 
of Eq. 1 where f (smokezcw,d- l) takes either linear or quadratic functional forms. 
In doing so, we find little difference between the estimated linear and quadratic 
responses (SI Appendix, Fig. S8A). This linearity is consistent with other estimates 
in the literature that also estimate (or assume) linear relationships between res-
piratory, cardiovascular, and mortality- related outcomes and of wildfire smoke 
exposure (36). To assess whether impacts differ by income group we therefore 
utilize the linear version of Eq. 1 and interact the smoke PM2.5 terms with zipcode 
level average median income terciles. We find small differences between groups 
that are not statistically different from each other (SI Appendix, Fig. S8B).

Given this linear relationship that appears to be similar across income groups, 
we calculate excess asthma ED visits for each gridcell- day by directly multiplying 
the gridcell level smoke exposure (fire- specific contributed smoke PM2.5 mul-
tiplied by the gridcell population) by the estimated effect of smoke PM2.5 on 
excess asthma ED visit rates. We then estimate the total number of asthma ED 
visit health impacts from a specific fire by summing across the gridcell estimates 
of excess asthma ED visits over the duration of the fire. We estimate 95% CIs on 
fire- specific attributed asthma ED visits by using the SEs estimated in the asthma 
concentration–response function (Eq. 1), multiplying by the population smoke 
exposure, and then summing up across gridcells for the duration of the fire.

This approach to calculating excess ED visits assumes that the response esti-
mated from asthma ED visits in California applies to other states. While we can-
not directly assess this assumption, we select asthma ED visits as our example 
health outcome of interest for this exercise in part because it has been extensively 
linked to wildfire smoke in a wide variety of settings (3). The substitution of any 
other linear wildfire- health dose–response function that measures outcomes in 
rates will yield a similar rank ordering of fire severity as our asthma ranking. D
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Nonlinear dose–response functions, functions that show heterogeneous effects 
across demographic subgroups, or functions that measure outcomes as percent-
age change in rates (when baseline rates differ across populations) could yield 
different rankings.

Comparison with Fire Suppression Costs and Structures Burned. To esti-
mate the relationship between suppression costs and smoke PM2.5 exposure, 
we use data from Baylis and Boomhower (38), which includes fire suppression 
costs for fires in 11 Western states from 2006 to 2016. Due to lack of con-
sistent fire suppression cost reporting, we focus analysis on fires larger than 
300 acres. The fire- fighting suppression costs are collected from different 
Freedom of Information Act and public records requests to six federal and 
state agencies. We direct interested readers to Baylis and Boomhower (38) 
for additional details. We match the fire suppression cost data to specific fires 
by identifying observations that fall into buffered (500 m) fire polygons and 
by ensuring that the ignition date present in the suppression dataset falls 
within 2 d of the initial start date of the fire polygon. We match the destroyed 
structures dataset (37) to individual fires in a similar way by filtering to the 
matching year and finding structure burned locations that fall within the 
buffered fire polygons.

Calculating Total PM2.5 for Transboundary Analysis. In order to compare 
smoke PM2.5 to total PM2.5 for counties, we calculate the average daily total PM2.5 
for each 10- km gridcell in 11 Western States from 2006 to 2020 using data 
from Swanson et al. (32). We use the exactextractr R package and take the area 
weighted mean of the 1- km gridcells that fall into the smoke PM2.5 10- km grid-
cells. We then identify the 10- km gridcells that overlap with counties and sum 
over the gridcell- days for both smoke PM2.5 and total PM2.5. Using the location 
of the source fire and the amount of contributed smoke PM2.5 in each gridcell, 
we can calculate the proportion of total PM2.5 in each gridcell that comes from 
out- of- county source fires.

Calculating Attribution Certainty Score for Each Fire. The fire- specific attribu-
tion certainty score estimates the percent of a fire’s smoke exposure that happens 
on days when there is no smoke from other fires. To calculate this score, we take a 
weighted average of the share of gridcell smoke PM2.5 weighting by the smoke expo-
sure of a specific fire. We walk through an example of this calculation for the single vs. 
multiple fire case in SI Appendix, Fig. S4. As described above, the share calculation of 
a fire takes into account the number of trajectory points and the cumulative trajectory 
distance of the points that belong to a specific fire divided by the gridcell total weight.

Data, Materials, and Software Availability. The code and data to replicate the 
results and figures in the main text and SI Appendix will be made available upon 
publication at https://github.com/jeffwen/smoke_linking_public (74).
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